Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.731
Filtrar
1.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652203

RESUMO

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Assuntos
Regulação da Expressão Gênica de Plantas , Olea , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Filogenia , Olea/genética , Olea/metabolismo , Álcool Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Glucosídeos Iridoides/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Fosfato de Piridoxal/metabolismo , Iridoides/metabolismo , Genes de Plantas
2.
J Bacteriol ; 206(4): e0004224, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38563759

RESUMO

In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.


Assuntos
Salmonella enterica , Scrapie , Ovinos , Animais , Salmonella enterica/genética , Acrilatos/metabolismo , Proteínas de Bactérias/genética , Fosfato de Piridoxal/metabolismo , Tetra-Hidrofolatos/metabolismo , Serina/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542149

RESUMO

Enzymes reliant on pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, hold significant importance in both biology and medicine. They facilitate various biochemical reactions, particularly in amino acid and neurotransmitter metabolisms. Vitamin B6 is absorbed by organisms in its non-phosphorylated form and phosphorylated within cells via pyridoxal kinase (PLK) and pyridox-(am)-ine 5'-phosphate oxidase (PNPOx). The flavin mononucleotide-dependent PNPOx enzyme converts pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate into PLP. PNPOx is vital for both biosynthesis and salvage pathways in organisms producing B6 vitamers. However, for those depending on vitamin B6 as a nutrient, PNPOx participates only in the salvage pathway. Transferring the PLP produced via PNPOx to client apo-enzymes is indispensable for their catalytic function, proper folding and targeting of specific organelles. PNPOx activity deficiencies due to inborn errors lead to severe neurological pathologies, particularly neonatal epileptic encephalopathy. PNPOx maintains PLP homeostasis through highly regulated mechanisms, including structural alterations throughout the catalytic cycle and allosteric PLP binding, influencing substrate transformation at the active site. Elucidation at the molecular level of the mechanisms underlying PNPOx activity deficiencies is a requirement to develop personalized approaches to treat related disorders. Finally, despite shared features, the few PNPOx enzymes molecularly and functionally studied show species-specific regulatory properties that open the possibility of targeting it in pathogenic organisms.


Assuntos
Doenças Metabólicas , Piridoxaminafosfato Oxidase , Humanos , Recém-Nascido , Oxirredutases , Fosfatos , Piridoxaminafosfato Oxidase/metabolismo , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Piridoxina , Vitaminas
4.
Biochem Biophys Res Commun ; 704: 149710, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417345

RESUMO

IlvA1, a pyridoxal phosphate-dependent (PLP) enzyme, catalyzes the deamination of l-threonine and l-serine to yield 2-ketobutyric acid or pyruvate. To gain insights into the function of IlvA1, we determined its crystal structure from Pseudomonas aeruginosa to 2.3 Å. Density for a 2-ketobutyric acid product was identified in the active site and a putative allosteric site. Activity and substrate binding assays confirmed that IlvA1 utilizes l-threonine, l-serine, and L-allo-threonine as substrates. The enzymatic activity is regulated by the end products l-isoleucine and l-valine. Additionally, the efficiency of d-cycloserine and l-cycloserine inhibitors on IlvA1 enzymatic activity was examined. Notably, site-directed mutagenesis confirmed the active site residues and revealed that Gln165 enhances the enzyme activity, emphasizing its role in substrate access. This work provides crucial insights into the structure and mechanism of IlvA1 and serves as a starting point for further functional and mechanistic studies of the threonine deaminase in P. aeruginosa.


Assuntos
Butiratos , Pseudomonas aeruginosa , Treonina Desidratase , Cristalografia por Raios X , Ciclosserina , Fosfatos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fosfato de Piridoxal/metabolismo , Treonina/metabolismo , Treonina Desidratase/genética , Treonina Desidratase/metabolismo
5.
Angew Chem Int Ed Engl ; 63(13): e202317161, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38308582

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes that catalyze γ-replacement reactions are prevalent, yet their utilization of carbon nucleophile substrates is rare. The recent discovery of two PLP-dependent enzymes, CndF and Fub7, has unveiled unique C-C bond forming capabilities, enabling the biocatalytic synthesis of alkyl- substituted pipecolic acids from O-acetyl-L-homoserine and ß-keto acid or aldehyde derived enolates. This breakthrough presents fresh avenues for the biosynthesis of pipecolic acid derivatives. However, the catalytic mechanisms of these enzymes remain elusive, and a dearth of structural information hampers their extensive application. Here, we have broadened the catalytic scope of Fub7 by employing ketone-derived enolates as carbon nucleophiles, revealing Fub7's capacity for substrate-dependent regioselective α-alkylation of unsymmetrical ketones. Through an integrated approach combining X-ray crystallography, spectroscopy, mutagenesis, and computational docking studies, we offer a detailed mechanistic insight into Fub7 catalysis. Our findings elucidate the structural basis for its substrate specificity, stereoselectivity, and regioselectivity. Our work sets the stage ready for subsequent protein engineering effort aimed at expanding the synthetic utility of Fub7, potentially unlocking novel methods to access a broader array of noncanonical amino acids.


Assuntos
Aminoácidos , Fosfato de Piridoxal , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Cristalografia por Raios X , Especificidade por Substrato , Carbono , Catálise
6.
Protein Sci ; 33(2): e4900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38284493

RESUMO

Adequate levels of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6 , and its proper distribution in the body are essential for human health. The PLP recycling pathway plays a crucial role in these processes and its defects cause severe neurological diseases. The enzyme pyridox(am)ine 5'-phosphate oxidase (PNPO), whose catalytic action yields PLP, is one of the key players in this pathway. Mutations in the gene encoding PNPO are responsible for a severe form of neonatal epilepsy. Recently, PNPO has also been described as a potential target for chemotherapeutic agents. Our laboratory has highlighted the crucial role of PNPO in the regulation of PLP levels in the cell, which occurs via a feedback inhibition mechanism of the enzyme, exerted by binding of PLP at an allosteric site. Through docking analyses and site-directed mutagenesis experiments, here we identified the allosteric PLP binding site of human PNPO. This site is located in the same protein region as the allosteric site we previously identified in the Escherichia coli enzyme homologue. However, the identity and arrangement of the amino acid residues involved in PLP binding are completely different and resemble those of the active site of PLP-dependent enzymes. The identification of the PLP allosteric site of human PNPO paves the way for the rational design of enzyme inhibitors as potential anti-cancer compounds.


Assuntos
Oxirredutases , Piridoxaminafosfato Oxidase , Humanos , Sítio Alostérico , Oxirredutases/metabolismo , Fosfatos , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidase/genética , Piridoxaminafosfato Oxidase/metabolismo
7.
Bioorg Chem ; 143: 107057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150934

RESUMO

Pyridoxal kinase (PDXK) is an essential enzyme in the synthesis of pyridoxal 5-phosphate (PLP), the active form of vitamin B6, which plays a pivotal role in maintaining the enzyme activity necessary for cell metabolism. Thus, PDXK has garnered attention as a potential target for metabolism regulation and tumor therapy. Despite this interest, existing PDXK inhibitors have faced limitations, including weak suppressive activity, unclear mechanisms of action, and associated toxic side effects. In this study, we present the discovery of a novel PDXK inhibitor, luteolin, through a high-throughput screening approach based on enzyme activity. Luteolin, a natural product, exhibits micromolar-level affinity for PDXK and effectively inhibits the enzyme's activity in vitro. Our crystal structures reveal that luteolin occupies the ATP binding pocket through hydrophobic interactions and a weak hydrogen bonding pattern, displaying reversible characteristics as confirmed by biochemical assays. Moreover, luteolin disrupts vitamin B6 metabolism by targeting PDXK, thereby inhibiting the proliferation of leukemia cells. This research introduces a novel screening method for identifying high-affinity and potent PDXK inhibitors and sheds light on clarification of the structural mechanism of PDXK-luteolin for subsequent structure optimization of inhibitors.


Assuntos
Luteolina , Piridoxal Quinase , Humanos , Piridoxal Quinase/química , Piridoxal Quinase/metabolismo , Luteolina/farmacologia , Fosfato de Piridoxal/metabolismo , Vitamina B 6/farmacologia , Vitamina B 6/metabolismo , Inibidores de Proteínas Quinases/farmacologia
8.
Enzyme Microb Technol ; 174: 110379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103484

RESUMO

γ-Aminobutyric acid (GABA) has been widely used in the food, feed, pharmaceutical, and chemical industry fields. Previously, we developed a whole-cell catalyst capable of converting L-glutamate (L-Glu) into GABA by overexpressing the glutamate decarboxylase gene (gadz11) from Bacillus sp. Z11 in Escherichia coli BL21(DE3). However, to enhance cell permeability, a freeze-thaw treatment is required, and to enhance GADZ11 activity, pyridoxal 5'-phosphate (PLP) must be added to the reaction system. The aim of this study is to provide a more efficient approach for GABA production by engineering the recombinant E. coli above. First, the inducible expression conditions of the gadz11 in E. coli were optimized to 37 °C for 6 h. Next, an ideal engineered strain was produced via increasing cell permeability by overexpressing sulA and eliminating PLP dependence by constructing a self-sufficient system. Furthermore, an efficient whole-cell biocatalytic process was optimized. The optimal substrate concentration, cell density, and reaction temperature were 1.0 mol/L (the molecular ratio of L-Glu to L-monosodium glutamate (L-MSG) was 4:1), 15 and 37 °C, respectively. Finally, a whole-cell bioconversion procedure was performed in a 3-L bioreactor under optimal conditions. The strain could be reused for at least two cycles with GABA yield, productivity and conversion ratio of 206.2 g/L, 117.8 g/L/h and 100.0%, respectively. This is currently the highest GABA productivity from a mixture of L-Glu and L-MSG reported without the addition of cofactors or additional treatment of cells. This work demonstrates that the novel engineered E. coli strain has the potential for application in large-scale industrial GABA production.


Assuntos
Escherichia coli , Glutamato de Sódio , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato de Sódio/metabolismo , Fosfato de Piridoxal/metabolismo , Ácido gama-Aminobutírico , Glutamato Descarboxilase/genética
9.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069313

RESUMO

γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades γ-aminobutyric (GABA) in the brain. GABA is an important inhibitory neurotransmitter that plays important neurological roles in the brain. Therefore, GABA-AT is an important drug target that regulates GABA levels. Novel and potent drug development to inhibit GABA-AT is still a very challenging task. In this study, we aimed to devise novel and potent inhibitors against GABA-AT using computer-aided drug design (CADD) tools. Since the crystal structure of human GABA-AT was not yet available, we utilized a homologous structure derived from our previously published paper. To identify highly potent compounds relative to vigabatrin, an FDA-approved drug against human GABA-AT, we developed a pharmacophore analysis protocol for 530,000 Korea Chemical Bank (KCB) compounds and selected the top 50 compounds for further screening. Preliminary biological analysis was carried out for these 50 compounds and 16 compounds were further assessed. Subsequently, molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations were carried out. In the results, four predicted compounds, A07, B07, D08, and H08, were found to be highly potent and were further evaluated by a biological activity assay to confirm the results of the GABA-AT activity inhibition assay.


Assuntos
4-Aminobutirato Transaminase , Vigabatrina , Humanos , Simulação de Acoplamento Molecular , Ácido gama-Aminobutírico/metabolismo , Simulação de Dinâmica Molecular , Fosfato de Piridoxal/metabolismo
10.
Biochem Biophys Res Commun ; 689: 149230, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984176

RESUMO

Legionella pneumophila aspartate aminotransferase (Lpg0070) is a member of the transaminase and belongs to the pyridoxal 5'-phosphate (PLP)-dependent superfamily. It is responsible for the transfer of α-amino between aspartate and α-ketoglutarate to form glutamate and oxaloacetate. Here, we report the crystal structure of Lpg0070 at the resolution of 2.14 Å and 1.7 Å, in apo-form and PLP-bound, respectively. Our structural analysis revealed the specific residues involved in the PLP binding and free form against PLP-bound supported conformational changes before substrate recognition. In vitro enzyme activity proves that the absence of the N-terminal arm reduces the enzyme activity of Lpg0070. These data provide further evidence to support the N-terminal arm plays a crucial role in catalytic activity.


Assuntos
Legionella pneumophila , Aspartato Aminotransferases/metabolismo , Legionella pneumophila/metabolismo , Sítios de Ligação , Modelos Moleculares , Fosfato de Piridoxal/metabolismo , Ácido Glutâmico/metabolismo , Cristalografia por Raios X
11.
Biochemistry ; 62(21): 3105-3115, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37890134

RESUMO

MppQ is an enzyme of unknown function from Streptomyces hygroscopicus (ShMppQ) that operates in the biosynthesis of the nonproteinogenic amino acid L-enduracididine (L-End). Since L-End is a component of several peptides showing activity against antibiotic-resistant pathogens, understanding its biosynthetic pathway could facilitate the development of chemoenzymatic routes to novel antibiotics. Herein, we report on the crystal structures of ShMppQ complexed with pyridoxal-5'-phosphate (PLP) and pyridoxamine-5'-phosphate (PMP). ShMppQ is similar to fold-type I PLP-dependent aminotransferases like aspartate aminotransferase. The tertiary structure of ShMppQ is composed of an N-terminal extension, a large domain, and a small domain. The active site is placed at the junction of the large and small domains and includes residues from both protomers of the homodimer. We also report the first functional characterization of MppQ, which we incubated with the enzymatically produced 2-ketoenduracidine and observed the conversion to L-End, establishing ShMppQ as the final enzyme in L-End biosynthesis. Additionally, we have observed that MppQ has a relatively high affinity for 2-keto-5-guanidinovaleric acid (i.e., 2-ketoarginine), a shunt product of MppP, indicating the potential role of MppQ in increasing the efficiency of L-End biosynthesis by converting 2-ketoarginine back to the starting material, l-arginine. A panel of potential amino-donor substrates was tested for the transamination activity against a saturating concentration of 2-ketoarginine in end-point assays. Most l-Arg was produced with l-ornithine as the donor substrate. Steady-state kinetic analysis of the transamination reaction with l-Orn and 2-ketoarginine shows that the kinetic constants are in line with those for the amino donor substrate of other fold-type I aminotransferases.


Assuntos
Fosfato de Piridoxal , Transaminases , Cinética , Transaminases/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfatos , Especificidade por Substrato , Cristalografia por Raios X
12.
Chembiochem ; 24(23): e202300561, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779345

RESUMO

α-Deuterated amino acids are valuable building blocks for developing deuterated drugs, and are important tools for studying biological systems. Biocatalytic deuteration represents an attractive strategy to directly access enantiopure α-deuterated amino acids. Here, we show that a PLP-dependent Mannich cyclase, LolT, involved in the biosynthesis of loline alkaloids, is capable of deuterating a diverse range of L-amino acids, including basic and acidic, nonpolar and polar, aliphatic and aromatic amino acids. Furthermore, complete deuteration of many amino acids can be achieved within minutes with exquisite control on the site- and stereoselectivity. During the course of this investigation, we also unexpectedly discovered that LolT exhibits ß-elimination activity with L-cystine and O-acetyl-L-serine, confirming our previous hypothesis based on structural and phylogenetic analysis that LolT, a Cα-C bond forming enzyme, is evolved from a primordial Cß-S lyase family. Overall, our study demonstrates that LolT is an extremely versatile biocatalyst, and can be used for not only heterocyclic quaternary amino acid biosynthesis, but also biocatalytic amino acid deuteration.


Assuntos
Aminoácidos , Serina , Aminoácidos/metabolismo , Filogenia , Fosfatos , Piridoxal , Fosfato de Piridoxal/metabolismo
13.
Sci Rep ; 13(1): 16456, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777556

RESUMO

D,L-Propargylglycine (PAG) has been widely used as a selective inhibitor to investigate the biological functions of cystathionine γ-lyase (CSE), which catalyzes the formation of reactive sulfur species (RSS). However, PAG also inhibits other PLP (pyridoxal-5'-phosphate)-dependent enzymes such as methionine γ-lyase (MGL) and L-alanine transaminase (ALT), so highly selective CSE inhibitors are still required. Here, we performed high-throughput screening (HTS) of a large chemical library and identified oxamic hydrazide 1 as a potent inhibitor of CSE (IC50 = 13 ± 1 µM (mean ± S.E.)) with high selectivity over other PLP-dependent enzymes and RSS-generating enzymes. Inhibitor 1 inhibited the enzymatic activity of human CSE in living cells, indicating that it is sufficiently membrane-permeable. X-Ray crystal structure analysis of the complex of rat CSE (rCSE) with 1 revealed that 1 forms a Schiff base linkage with the cofactor PLP in the active site of rCSE. PLP in the active site may be a promising target for development of selective inhibitors of PLP-dependent enzymes, including RSS-generating enzymes such as cystathionine ß-synthase (CBS) and cysteinyl-tRNA synthetase 2 (CARS2), which have unique substrate binding pocket structures.


Assuntos
Cistationina gama-Liase , Bases de Schiff , Animais , Humanos , Ratos , Domínio Catalítico , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Fosfatos , Fosfato de Piridoxal/metabolismo
14.
FEBS J ; 290(23): 5628-5651, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734924

RESUMO

Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function.


Assuntos
Piridoxina , Vitamina B 6 , Vitamina B 6/química , Piridoxina/metabolismo , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Piridoxal/metabolismo
15.
Biochemistry ; 62(17): 2611-2621, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37556254

RESUMO

Pyridoxal phosphate-dependent enzymes able to use oxygen as a co-substrate have emerged in multiple protein families. Here, we use crystallography to solve the 2.40 Å resolution crystal structure of Cap15, a nucleoside biosynthetic enzyme that catalyzes the oxidative decarboxylation of glycyl uridine. Our structural study captures the internal aldimine, pinpointing the active site lysine as K230 and showing the site of phosphate binding. Our docking studies reveal how Cap15 is able to catalyze a stereoselective deprotonation reaction, and bioinformatic analysis reveals active site residues that distinguish Cap15 from the structurally related d-glucosaminate-6-phosphate ammonia lyase and l-seryl-tRNA(Sec) selenium transferase (SelA). Our work provides the structural basis for further mechanistic investigation of a unique biosynthetic enzyme and provides a blueprint for understanding how oxygen reactivity emerged in the SelA-like protein family.


Assuntos
Aminoglicosídeos , Fosfato de Piridoxal , Fosfato de Piridoxal/metabolismo , Fosfatos , Proteínas Recombinantes , Cristalografia por Raios X
16.
Appl Environ Microbiol ; 89(8): e0092423, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37458600

RESUMO

Cronobacter sakazakii is an opportunistic pathogen capable of causing severe infections, particularly in neonates. Despite the bacterium's strong pathogenicity, the pathogenicity of C. sakazakii is not yet well understood. Using a comparative proteomic profiling approach, we successfully identified pdxY, encoding a pyridoxal kinase involved in the recycling of pyridoxal 5'-phosphate (PLP), as a gene essential for the successful pathogenesis of C. sakazakii. Knocking out the pdxY gene resulted in slower growth and reduced virulence. Our study sheds light on the fundamental importance of pyridoxal kinase for the survival and virulence of C. sakazakii. The identification of pdxY as gene essential for successful pathogenesis provides a potential target for the development of new antibiotic treatments. IMPORTANCE The opportunistic pathogen Cronobacter sakazakii is known to cause severe infections, particularly in neonates, and can result in high mortality rates. In this study, we used a comparative proteomic profiling approach to identify genes essential for the successful pathogenesis of C. sakazakii. We successfully identified pdxY, encoding a pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate (PLP), as a gene essential for the successful pathogenesis of C. sakazakii. Knocking out the pdxY gene resulted in impaired growth and reduced virulence. This study sheds light on the fundamental importance of pyridoxal kinase for the survival and virulence of C. sakazakii, which can be a potential target for the development of new antibiotic treatments. This study highlights the importance of comparative proteomic profiling in identifying virulence factors that can be targeted for the development of new antibiotics.


Assuntos
Cronobacter sakazakii , Cronobacter , Recém-Nascido , Humanos , Vitamina B 6 , Virulência , Piridoxal Quinase/genética , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Proteômica , Fosfato de Piridoxal/metabolismo , Piridoxina , Antibacterianos , Fosfatos , Vitaminas
17.
J Biol Chem ; 299(9): 105047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451483

RESUMO

Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.


Assuntos
Mitocôndrias , Vitamina B 6 , Humanos , Células HEK293 , Proteínas/genética , Proteínas/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Vitamina B 6/metabolismo , Fibroblastos , Células Cultivadas , Piridoxaminafosfato Oxidase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredução , Aminoácidos/metabolismo
18.
ACS Chem Biol ; 18(7): 1653-1660, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37406307

RESUMO

Personalized assessment of vitamin levels in point-of-care (POC) devices is urgently needed to advance the recognition of diseases associated with malnutrition and unbalanced diets. We here introduce a diagnostic platform, which showcases an easy and rapid readout of vitamin B6 (pyridoxal phosphate, PLP) levels in erythrocytes as a first step toward a home-use POC. The technology is based on fluorescent probes, which bind to PLP-dependent enzymes (PLP-DEs) and thereby indirectly report their occupancy with endogenous B6. For example, low vitamin levels result in high probe binding, yielding a strong signal and vice versa. Antibodies against signature human PLP-DEs were immobilized on microarrays to capture probe labeled enzymes for fluorescent detection. Calibrating the system with defined B6 levels revealed a concentration-depended readout as well as sufficient sensitivity for its detection in erythrocytes. To account for individual differences in protein expression, a second antibody was used to normalize protein abundance. This sandwiched assay correctly reported relative B6 levels in human erythrocyte samples, as confirmed by classical laboratory diagnostics. In principle, the platform layout can be easily expanded to other crucial vitamins beyond B6 via an analogous probe strategy.


Assuntos
Fosfato de Piridoxal , Vitamina B 6 , Humanos , Fosfato de Piridoxal/metabolismo , Testes de Diagnóstico Rápido , Piridoxina/metabolismo , Vitaminas , Eritrócitos/metabolismo
19.
Plant Physiol ; 193(2): 1433-1455, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37453131

RESUMO

The identification of factors that regulate C/N utilization in plants can make a substantial contribution to optimization of plant health. Here, we explored the contribution of pyridox(am)ine 5'-phosphate oxidase3 (PDX3), which regulates vitamin B6 homeostasis, in Arabidopsis (Arabidopsis thaliana). Firstly, N fertilization regimes showed that ammonium application rescues the leaf morphological phenotype of pdx3 mutant lines but masks the metabolite perturbance resulting from impairment in utilizing soil nitrate as a source of N. Without fertilization, pdx3 lines suffered a C/N imbalance and accumulated nitrogenous compounds. Surprisingly, exploration of photorespiration as a source of endogenous N driving this metabolic imbalance, by incubation under high CO2, further exacerbated the pdx3 growth phenotype. Interestingly, the amino acid serine, critical for growth and N management, alleviated the growth phenotype of pdx3 plants under high CO2, likely due to the requirement of pyridoxal 5'-phosphate for the phosphorylated pathway of serine biosynthesis under this condition. Triggering of thermomorphogenesis by growth of plants at 28 °C (instead of 22 °C) did not appear to require PDX3 function, and we observed that the consequent drive toward C metabolism counters the C/N imbalance in pdx3. Further, pdx3 lines suffered a salicylic acid-induced defense response, probing of which unraveled that it is a protective strategy mediated by nonexpressor of pathogenesis related1 (NPR1) and improves fitness. Overall, the study demonstrates the importance of vitamin B6 homeostasis as managed by the salvage pathway enzyme PDX3 to growth in diverse environments with varying nutrient availability and insight into how plants reprogram their metabolism under such conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Carbono/metabolismo , Fosfatos/metabolismo , Dióxido de Carbono/metabolismo , Vitamina B 6 , Piridoxina/metabolismo , Fosfato de Piridoxal/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nitrogênio/metabolismo
20.
J Am Chem Soc ; 145(24): 13357-13370, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37278531

RESUMO

Coenzymes are involved in ≥30% of enzymatic reactions and likely predate enzymes, going back to prebiotic chemistry. However, they are considered poor organocatalysts, and thus their pre-enzymatic function remains unclear. Since metal ions are known to catalyze metabolic reactions in the absence of enzymes, here we explore the influence of metal ions on coenzyme catalysis under conditions relevant to the origin of life (20-75 °C, pH 5-7.5). Specifically, Fe or Al, the two most abundant metals in the Earth's crust, were found to exhibit substantial cooperative effects in transamination reactions catalyzed by pyridoxal (PL), a coenzyme scaffold used by roughly 4% of all enzymes. At 75 °C and 7.5 mol % loading of PL/metal ion, Fe3+-PL was found to be 90-fold faster at catalyzing transamination than PL alone and 174-fold faster than Fe3+ alone, whereas Al3+-PL was 85-fold faster than PL alone and 38-fold faster than Al3+ alone. Under milder conditions, reactions catalyzed by Al3+-PL were >1000 times faster than those catalyzed by PL alone. Pyridoxal phosphate (PLP) exhibited similar behavior to PL. Experimental and theoretical mechanistic studies indicate that the rate-determining step in the PL-metal-catalyzed transamination is different from metal-free and biological PL-based catalysis. Metal coordination to PL lowers the pKa of the PL-metal complex by several units and slows the hydrolysis of imine intermediates by up to 259-fold. Coenzymes, specifically pyridoxal derivatives, could have exhibited useful catalytic function even before enzymes.


Assuntos
Fosfato de Piridoxal , Piridoxal , Fosfato de Piridoxal/metabolismo , Metais , Coenzimas/metabolismo , Aminação , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...